In Article " Electrical Rules and Calculations for Air-Conditioning Systems – Part One ", which was the first Article in our new Course HVAC-2: Electrical Rules and Calculations for Air-Conditioning Systems, I explained the following points:
- Introduction for Air-Conditioning Systems Types,
- Introduction for Types of Motors/Compressors used in Air-Conditioning Systems,
Third: Electrical Wiring for Air-Conditioning Systems
|
1- Importance Of Electrical
Wiring For Air Conditioning Systems
In the detailed design phase, the electrical designer must size and select the wires/cables, conduits, starters, disconnects and switchgear necessary for supplying power and control to HVAC equipment. This information designed by the electrical designer will be and must appear on the electrical drawings for proper installation by the electrical contractor. So, to determine the electrical equipment and power supply required for the HVAC system proper operation, the electrical designer needs:
The above points can be fulfilled by understanding the electrical wiring diagram of individual HVAC equipment and of the whole system also. Note: Also the HVAC designer will need to know the size of the electrical loads to assess the impact of the heat generated by the electrical system on the HVAC load. |
3- Types of Electrical Wiring Diagrams For Air Conditioning
Systems
There are three basic types of
wiring diagrams used in the HVAC/R industry today, which are:
|
3.1 The Ladder Diagram
It is the most common type of
wiring
Diagrams. It is called ladder because the symbols that are used to represent
the components in the system have been placed on the rungs of a ladder.
ladder diagrams will be referred to as “schematic” diagrams, or simply
“schematics.” A typical schematic of a packaged air conditioner is shown in
Fig.3.
In electrical schematics, the
symbols stand for various components in the circuit, and the lines stand for
the wires connecting them. The intention of the overall schematic is to show
how the circuit functions, not how it actually looks.
Note:
A wiring schematic shows the
condition of a piece of equipment when there is no power being applied to the
unit. For example, if a switch is depicted as being normally open (N/O) or
normally closed (N/C), remember that the position of the switch is shown as
it appears when there is no power applied to that circuit. If there is any
deviation from this practice, there will be an explanatory note on the
schematic.
Before you begin looking at
electrical schematic diagrams, though, remember that there are always five
basic components to any schematic:
|
3.2 The Line Diagram
|
3.3 The Installation Diagram
This diagram is used primarily
by the
installing
contractor. It normally shows only what the terminal board connections are, and very
rarely will it include any internal wiring of the unit. Fig.6 is a typical installation diagram
for a residential cooling system.
|
4- How to read Electrical Wiring Diagrams?
In order to read
electrical Schematics,
you need to be familiar with the following:
|
4.1 Symbols Used In Schematics
The most important symbols used in electrical schematics are:
A- Power Supplies:
Many different supply voltages
are used in the HVAC/R industry, ranging from 575-V, three-phase power
supplies to 24-V control circuit voltages. Power supplies may be indicated by
solid lines or by dashed or dotted lines.
B- Wiring:
Notes:
Wiring identification:
Every manufacturer can identify
the wires used in electrical diagrams by one of the following methods:
Note:
The used wiring identification method
should be clearly indicated in the legend that accompanies the drawing.
C- Switches:
A switch is a device that interrupts power
to the load. It may be:
C.1 Manually Operated Switch:
The switch can be in the closed
position (Normally closed) (N/C) or in the open position (Normally open) (N/O)
(see Fig.10). You must note that in electrical wiring schematic the position of
the switch is shown as it appears when there is no power applied to that
circuit. If there is any deviation from this practice, there will be an
explanatory note on the schematic.
A switch is characterized by :
Note:
The dashed line in the switch
symbols represents the mechanical connection that makes the contacts move
together, but these contacts are not connected electrically.
C.2 Activated automatically by
pressure or temperature (Control Switches):
Pressure and temperature
controls are switches; they also may be configured with various combinations
of poles and throws.
The position of the switch “arm” in the schematic symbol indicates the operation of the control. for examples: (see Fig.12)
C.3 Electrically Controlled
Switch:
a- Relays:
b- Contactors:
D- Loads:
Loads are devices that consume power
and convert it to some other form of energy, such as motion or heat. They may
be motors, heaters, lights, or other pieces of equipment. A transformer is a
type of power-consuming device, but rather than converting energy, a
transformer changes the voltage or current.
|
4.2 Schematic Diagram Configurations
There are two basic
configurations used in schematics today to show the approximate placement of
loads, switches, and different power or supply voltages. They are :
A- Side-by-Side Arrangement:
In this arrangement,
Manufacturers usually place motors and other power-consuming components on
the right side of the diagram. This is called the load side. The switches and
other controllers are placed on the left side of the diagram. This is called
the line side.
B- Up-and-Down Arrangement:
In this arrangement, the schematic is
divided into:
Normally the high-voltage
section is placed at the top of the diagram, and the low-voltage section is
placed at the bottom of the diagram (see Figure 10). The vertical lines at
the outer edges of the diagram represent the source of electric power. All
control devices and load devices are located on the horizontal lines between
these outer vertical lines.
An easy way to determine the
different voltages in this type of schematic is to look for the transformer.
It normally is the dividing line for voltage changes.
Fig.17 shows many of the
schematic symbols used in the HVAC/R industry today.
|
4.3 Schematic Diagram Locators
As in roadmaps, almost all
mapmakers place numbers and/or letters along the vertical and horizontal
edges of maps to help users find particular cities, towns, landmarks, or
other locations. Electrical schematics utilize a similar system.
Take a look at Fig.18. This is the same schematic of a packaged air conditioner that you saw
in Fig.3, but notice that now a column of small numbers has been added,
running down the left hand side of the diagram. These numbers are used to
indicate the relative location of each horizontal line in the diagram.
Note:
If a line falls between two
numbers, the number lower on the page generally is used as the location
reference.
This type of line-numbering
system can be very useful in helping the reader identify the location of a
specific component on the schematic, as well as its controlling switch. For
examples:
A- Numbers on Left hand side of
the diagram:
In Fig.19A, “C1” contacts are located on
lines 7 and 11. Similarly, in Fig.19B, you can find the high voltage
switches “IFR” and “C1” on lines 28 and 35, respectively. Now look at the
lower portion of the wiring diagram in Fig.18 and locate the relay coils
“IFR” and “C1” on lines 52 and 57.
B- Numbers on Right hand side
of the diagram:
In Fig.19C, note that there
are small numbers along the right hand side of the diagram as well. These numbers designate the line
location of relay contacts. The small number 28 in the right-hand margin
tells you the line location of the contacts associated with relay coil “IFR.”
Look back at line 28 in Fig.19B, and you will find the “IFR” contacts.
Likewise, the numbers 7, 11, and 35 in the right-hand margin of Fig.19C
refer you to the lines where the contacts associated with relay coil “C1” can
be found.
C- Underlined Numbers:
Note that the 35 is underlined.
An underlined number signifies a normally closed contact (and, conversely, a
number that is not underlined signifies a normally open contact). Accordingly, you
will find that the “C1” contacts located on line 35 in Fig.19B are shown
as normally closed, and that the “C1” contacts on lines 7 and 11 in Fig.19A are shown as normally open.
|
For more
information about electrical diagrams, please review the following Articles:
|
In the next Article, I will explain Electrical Wiring Diagrams for different Air-Conditioning Systems Types and Equipment. So, please keep following.
great engineering knowledge
ReplyDeleteits good ilike it
ReplyDeleteJust what I was looking for. Thanks for the insight.
ReplyDeleteAbsolutely helpful
ReplyDelete